

Studies Supported Through the Interagency Agreement with NCTR

Paul C. Howard, Ph.D.
Associate Director,
Office of Scientific Coordination
National Center for Toxicological Research
U.S. Food & Drug Administration

Paul.Howard@fda.hhs.gov

Disclaimer

The presenter, and not the FDA, is responsible for the accuracy of this presentation.

The views, opinions, and/or conclusions should not be interpreted as current or future official position or policy of the U.S. Food & Drug Administration (FDA). Any mention of commercial organizations or trade names is not intended as endorsement.

FDA Mission

- Protect public health by ensuring safety, efficacy and security of human and animal drugs, biological products, medical devices, food supply, cosmetics, and products that emit radiation.
- Advance public health by speeding innovations for more effective, safe and affordable medicines and food.
- Provide public with accurate, science-based information.

Products Regulated by FDA

Foods

- All interstate domestic and imported; including produce, fish, shellfish, shell eggs, milk; except meat and poultry.
- · Bottled water.
- Wine (<7% alcohol).
- · Infant formula

Food Additives

- Colors
- Food containers

Cosmetics

Dietary Supplements

Animal Feeds

Pharmaceuticals

- Human (safety, efficacy)
- Animal (safety, efficacy)

Medical Devices

Radiation Producing Devices

Vaccines

Blood Products

Tissues

Tobacco

Sterilants

NCTR Mission

FDA's National Center for Toxicological Research (NCTR, Jefferson, AR)

Conducts peer-reviewed scientific research in support of FDA mission, and provides technical expertise, for science-based regulatory decisions to improve health of US public:

- Understand critical biological events in toxicity;
- Develop and characterize methods and incorporate new technologies to improve assessment of human exposure, susceptibility and risk;
- Increase understanding of interaction between genetics, metabolism and nutrition.

NTP Mission

- Evaluate agents of public health concern through development and application of tools of modern toxicology and molecular biology.
- Maintain an objective, sciencebased approach to critical issues in toxicology.
- Commit to using best science available.

Policy Oversight

NCTR/FDA as **NTP** Partner

• NCTR/FDA, NIOSH/CDC, NIEHS founding organizations of NTP

Science Oversight
(External)

NTP Board of
Scientific Counselors
• Technical Reports
Review Subcommittee
Scientific Advisory Committee
on Alternative
Toxicological Methods

- Representation on NTP Committees:
 - -Interagency Chemical Coordination and Evaluation Committee (ICCEC)
 - Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)
 - Board of Scientific Counselors (BSC)
 - BSC Technical Report Review Subcommittee
 - Executive Committee

NCTR/FDA as **NTP** Partner

- NTP-related toxicological research projects ongoing at NCTR and within FDA.
- Peer-reviewed publications on toxicity, mechanism of action, or related toxicological methods.

Interagency Agreement (IAG) between NCTR/FDA and NTP/NIEHS

- NTP and FDA interests "overlap" on toxicity of FDA-regulated products.

- Established
Interagency Agreement
(IAG) to facilitate
cooperation between
NCTR/FDA and
NTP/NIEHS
on compounds of
mutual interest.

Initiated 10 Dec 1992

Dr. J.E. Henney (FDA)

Dr. K.L. Olden (NIEHS)

Goals of IAG

- (1) Support the design and conduct of toxicological studies consistent with needs and goals of FDA and NTP/NIEHS.
- (2) Provide oversight and ensure studies are conducted in the most rigorous scientific manner.
- (3) Ensure data resulting from the studies are available to enable regulatory agencies (U.S. and worldwide) to make science-based, safety assessment and risk management decisions.

IAG Toxicology Study Selection and Review Committee (TSSRC)

- (1) Oversight of studies on Interagency Agreement.
- (2) Provide forum for interaction between:

NCTR study scientist, FDA regulatory scientists, NTP toxicologists

* reiterative process with continuous input from regulatory scientists

IAG Toxicology Study Selection and Review Committee (TSSRC)

- (3) Scientists from FDA, NTP/NIEHS, and invited subject matter experts.
- (4) Biannual meeting.
- (5) Protocol reviewed at FDA and NTP.
- (6) Typical presentation/interaction:
 30 min presentation by study scientist
 (concept; research plan; study progress)
 Input from FDA regulatory center scientists
 Input from other FDA center scientists

Input from invited scientists at meeting

Compounds Studied - Areas

Endocrine Active Agents

Dietary Supplements

Food Contaminants & Food Safety

Pediatric/Translational

Drug/Device Interaction

AIDS Therapeutics

Phototoxicity

Nanoscale Materials

Endocrine Active Agents

Multigenerational Studies

Endocrine Active Agents

Multigenerational Studies

Genistein (TR-539, TR-545)

- Endocrine effects in exposed female and male SD rats; no generational amplification

Ethinyl Estradiol (TR-547, TR-548)

- Positive control for above studies; effects in female and male SD rats; no generational amplification

Endocrine Active Agents

Endocrine Disruptor Studies

* Bisphenol A

- pharmacokinetic study using rats and non-human primates for physiologicallybased pharmacokinetic (PBPK) model
- subchronic toxicity in rats, targeted endpoints
- (neuroanatomy and behavior study in rats)

Dietary Supplements

Riddelliine (mechanistic) (TR-508)

- Mechanistic studies identified common DNA reactive intermediate for pyrrolizidine alkaloids

†Aloe vera (oral)

- Determine dose-response following chronic oral administration of whole leaf

Dietary Supplements

Ephedra

- Studies cancelled when FDA banned ephedra use in products.

* Bitter Orange (Citrus aurantium)

- Developmental toxicity studies
- Physiological effects in exercise challenged rat (± caffeine)

*on-going studies

Dietary Supplements

- * Usnic Acid and Usnea lichen
- Toxicokinetics and mechanistic studies in vitro and in rats
- * Glucosamine/Chondroitin Sulfate
- Toxicity in diabetic rat model

*on-going studies

Food Contaminants and Food Safety

Fumonisin B₁ (TR-496)

- Established hepato- and renalcarcinogenicity, non-genotoxic mechanism; dose-response for risk assessment

Malachite Green (TR-527)

- Established hepatocarcinogenicity; dose-response for risk assessment

Food Contaminants and Food Safety

*† Acrylamide

- Conducting carcinogenesis, toxicokinetics, PBPK, neuroendocrine, neurotoxicity studies

* Furan

- Conducting carcinogenesis study in rats to examine lower end of dose-response curve

^{*}on-going studies † to be reviewed at 2010 BSC TRRS meeting

Food Contaminants and Food Safety

* Melamine plus Cyanuric Acid

- Establish dose-response in rodents and pigs; biomarkers and mechanism of action

*on-going studies

Pediatric/Translational

Chloral hydrate (TR-502)

- Carcinogenesis in female mice was equivocal; neonatal exposure; mutagenicity studies equivocal

Chloral hydrate (dietary restricted) (TR-503)

- Liver carcinogenesis in dietary restricted mice through peroxisome proliferation

*on-going studies

Pediatric/Translational

* Ketamine

 Verify and quantify in vitro and in vivo (rat) neurological apoptosis effects; behavioral studies

- Development of mechanistic and analytical methods for effects in rodents; pharmacokinetic studies in non-human primates

* on-going studies

Drug/Device Interaction

Urethane +/- ethanol (TR-510)

-Ethanol had weak/mixed effect on urethane carcinogenicity

* Cellular telephone radiation

- Support NTP in vivo studies with brain histochemistry; in vitro studies

AIDS Therapeutics

† Combination of Zidovudine, Nevirapine, Lamivudine, Nelfinavir, and Efavirenz

- Quantify carcinogenesis with transplacental and transplacental/neonatal exposure; mechanism (DNA adducts, mutagenicity, clastogenicity)

† Zidovudine and Lamivudine in transgenic mouse model

- Determine carcinogenicity in genetically modified mouse model [$C3B6F1^{trp53(+/-)}$, $FVBp16^{Ink4a(+/-)}/p19^{Arf(+/-)}$]

Phototoxicity

NTP Center for Phototoxicology

-Add "photo-" to NTP testing portfolio: phototoxicity, photocarcinogenesis, photococarcinogenesis, "photon-based" mechanism of action

- Simulated solar light, UVB, UVA, laser light
- Hairless mouse
- Transgenic mice

Phototoxicity

Alpha and Beta Hydroxy Acids (TR-524)

- Determined that application of alpha hydroxy acid did not increase carcinogenesis of sunlight (photococarcinogenesis); beta hydroxy acid protected.

Aloe Vera (topical) (TR-553)

- Determined that application of aloe constituents to skin had marginal effect on carcinogenesis of sunlight.

Phototoxicity

† Retinyl Palmitate

- Determine the photococarcinogenesis of topical application of RP

* Permanent Makeup Inks

- Determine the immunogenic component in permanent makeup inks that caused adverse events

Lemon and Lime Oil Furocoumarins

- Established DNA adduct of oxypeucedanin and other furanocoumarins

[†] to be reviewed at Nov 2009 BSC TRRS meeting

Nanoscale Materials

- * Titanium Dioxide and Zinc Oxide
- Determine if nanoscale materials penetrate skin; further studies if warranted
- * Tg.AC Model with Titanium Dioxide
- Tg.AC model for phototumorigenicity; if warranted, photoactivation following nanoscale TiO2 application

Nanoscale Materials

* Nanoscale Silver

- Determine pharmacokinetics; methods of measurement; subchronic toxicity and role of size and shape

* Nanoscale Gold

- Determine pharmacokinetics and subchronic toxicity

* on-going studies

Output Measures of Interagency Agreement

Number of Peer-Review Publications (black), or Technical Reports (blue)

* Public Health Impact

- Fumonisin B₁ study established carcinogenicity; used to set US and WHO acceptable levels in human and animal food.
- Chloral hydrate studies led to FDA conclusion that pediatric risk was minimal and not requiring labeling changes.
- Urethane studies resulted in distilled spirits industry changing manufacturing methods to reduce levels.

* Public Health Impact

- Malachite green study established carcinogenicity; used to support continued ban on use with edible fish (US, UK).
- Riddelliine mechanistic studies indicated common active intermediate for pyrrolizidine alkaloids; FDA issued warning and established contaminant levels for pyrrolizidine alkaloids.
- Alpha- and beta-hydroxy acid studies resulted in FDA conclusion of no added risk in presence of sunlight.

*Selected examples

Interagency Agreement between NCTR/FDA and NTP/NIEHS:

"A successful partnership protecting public health"

